skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bourgeois, Julien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the literature we can find many kinds of modular robot that can build a wide variety of structures. In general, finding an assembly order to reach the final configuration, while respecting the insertion constraints of each kind of modular robot is a difficult process that requires system-specific tuning. In this article, we introduce a generic assembly planner by constrained disassembly (GAPCoD) which works with all kinds of modular robots. It outputs a directed acyclic graph where vertices are modules needing to be placed before his child nodes. This graph is obtained through the disassembly of the desired structure submitted to user chosen constraints. We detail the compiler as well as the way to choose constraints and their influence on performance. The robots embed simple path planning algorithm to reach the destination and act as decentralized agents. Examples are provided to show the possibilities that the compiler offers with two very different robot systems and constraints. 
    more » « less